BAB II

TINJAUAN PUSTAKA

2.1 Teori Dasar

Dalam menjabarkan teori - teori inti yang menjadi pedoman dalam karya penulisan penelitian. Beberapa teori dibutuhkan dalam menjadi landasan dalam sebuah penelitian.

2.1.1 Artificial Intelegence

Pengabdian kepada masyarakat merupakan salah satu aspek penting dalam dunia pendidikan, khususnya di perguruan tinggi. Kegiatan ini tidak hanya menjadi sarana pengamalan ilmu, tetapi juga membentuk karakter pendidik yang peka terhadap permasalahan sosial dan memiliki semangat kontribusi nyata bagi bangsa. Melalui pengabdian ini, dosen dan mahasiswa dapat menunjukkan peran aktif mereka dalam membangun masyarakat, sebagai bagian dari tanggung jawab moral dan intelektual di luar ruang kelas. Sementara itu, sistem pendidikan konvensional saat ini masih menghadapi berbagai tantangan, seperti keterbatasan sumber daya, kurikulum yang kurang fleksibel, serta kesulitan dalam menyesuaikan pembelajaran dengan kebutuhan peserta didik. Dalam menghadapi tantangan tersebut, pemanfaatan teknologi kecerdasan buatan (*Artificial Intelligence/AI*) menjadi salah satu solusi yang menjanjikan. AI memberikan pendekatan yang lebih adaptif dan fleksibel, sehingga dapat membantu pendidik memahami karakteristik dan kebutuhan siswa secara lebih mendalam. Dukungan AI, proses pembelajaran dapat disesuaikan secara personal, memungkinkan siswa belajar dengan kecepatan

dan gaya yang sesuai dengan kemampuan mereka masing-masing. Hal ini tentu berdampak positif terhadap efektivitas pembelajaran. Selain itu, AI juga berperan dalam memperluas akses pendidikan, terutama bagi masyarakat di daerah terpencil atau mereka yang memiliki keterbatasan fisik. Melalui platform pembelajaran daring berbasis AI, pendidikan menjadi lebih inklusif dan mudah dijangkau. Penerapan AI tidak hanya terbatas pada dunia pendidikan, tetapi juga membuka peluang besar untuk pengembangan penelitian lintas bidang keilmuan. Teknologi ini dapat dimanfaatkan dalam berbagai disiplin ilmu seperti Akuntansi, Sistem Informasi, Manajemen, Teknik Informatika, Teknik Industri, Teknik Mesin, Sastra Inggris, Psikologi, Ilmu Komunikasi, Teknik Arsitektur, Teknik Elektro, hingga Teknik Sipil. Kolaborasi antarbidang melalui pemanfaatan AI diharapkan mampu mendorong inovasi yang bermanfaat bagi masyarakat luas (Kuncara et al., 2024).

2.1.2 Sistem Pendukung Keputusan (SPK)

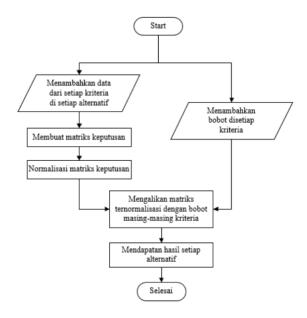
Sistem Pendukung Keputusan (SPK), atau yang dikenal juga sebagai Decision Support Systems (DSS), merupakan sistem informasi berbasis komputer yang dirancang untuk membantu proses pengambilan keputusan, terutama dalam menghadapi permasalahan yang bersifat semi-terstruktur maupun tidak terstruktur. SPK sangat berguna, misalnya dalam menentukan bakat siswa agar keputusan seperti pemilihan jurusan dapat dilakukan dengan lebih tepat dan mengurangi kemungkinan kesalahan. Dalam penerapannya, SPK memerlukan penentuan kriteria dan bobot yang biasanya diperoleh melalui metode seperti wawancara atau pengumpulan data lainnya. Sebagai alat bantu, SPK menyediakan data, model analisis, dan alternatif solusi sehingga pengambilan keputusan menjadi lebih cepat, akurat, dan objektif. Meskipun demikian, SPK tidak menggantikan peran

pengambil keputusan manusia, melainkan berfungsi untuk memberikan dukungan berupa informasi yang relevan dan perhitungan yang terstruktur guna mempermudah evaluasi berbagai alternatif. Oleh karena itu, SPK dapat meningkatkan efektivitas dan efisiensi dalam pengambilan keputusan di berbagai bidang, seperti pendidikan, bisnis, pemerintahan, dan industri (Wahid Hasyim, Errissya Rasywir, 2023).

Sistem Pendukung Keputusan (SPK) dalam konteks penentuan dosen berprestasi, SPK digunakan untuk mengolah data berdasarkan beberapa aspek penilaian yang memiliki bobot berbeda sesuai tingkat kepentingannya. Metode Simple Multi Attribute Rating Technique (SMART) digunakan untuk menilai dan membandingkan alternatif dosen berdasarkan kriteria tersebut, sehingga dapat menghasilkan peringkat yang objektif dan akurat. Dengan pendekatan ini, proses pemilihan dosen berprestasi menjadi lebih sistematis dan mengurangi subjektivitas, sehingga keputusan yang diambil dapat dipertanggungjawabkan secara ilmiah (Khotop. Adhy Sugara, 2023).

2.1.3 Simple Additive Weighting (SAW)

Metode *Simple Additive Weighting* (SAW) merupakan salah satu teknik pengambilan keputusan multikriteria yang menggunakan pendekatan penjumlahan terbobot. Metode ini sering diterapkan dalam situasi yang melibatkan lebih dari satu kriteria dalam proses pengambilan keputusan. Dalam penerapannya, SAW memerlukan sejumlah kriteria yang telah ditentukan sebelumnya, di mana masingmasing kriteria akan diberikan bobot sesuai tingkat kepentingannya. Setiap alternatif akan dinilai berdasarkan atribut-atribut tersebut, kemudian dilakukan


perhitungan nilai total melalui proses penjumlahan hasil perkalian antara bobot dan nilai atribut dari masing-masing kriteria. Selanjutnya, dilakukan perangkingan untuk menentukan alternatif terbaik dari beberapa pilihan yang tersedia, berdasarkan nilai akhir tertinggi yang diperoleh (Naibaho, 2024).

Metode *Simple Additive Weighting* (SAW) sebelum dilakukan proses perhitungan, diperlukan tahap normalisasi terhadap matriks keputusan agar nilai dari setiap alternatif berada pada skala yang setara dan dapat dibandingkan secara adil dalam implementasinya. Nilai total suatu alternatif dihitung dengan menjumlahkan hasil perkalian antara bobot dan nilai normalisasi dari tiap kriteria. Nilai dari setiap kriteria harus bebas satuan atau dimensi, yang diperoleh melalui proses normalisasi sebelumnya. SAW juga membedakan dua jenis atribut utama, yaitu kriteria benefit (keuntungan) dan kriteria cost (biaya), di mana perbedaan utama dari keduanya terletak pada cara penilaiannya dalam proses pemilihan keputusan terbaik (Saputra, 2020).

Menurut Fishburn dan Mac Crimmon SAW mempunyai prinsip dalam melakukan pengembangan sistem, atau lebih tepatnya pengolahan data, yaitu.

- 1. Konsep dasar SAW adalah mencari penjumlahan terbobot dari rating kinerja ternormalisasi (R) pada setiap alternatif pada semua bobot atribut (W).
- Metode SAW membutuhkan proses normalisasi matriks ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

Di bawah ini merupakan langkah-langkah *Simple Additive Weighting* (SAW) dalam bentuk gambaran struktur algoritma SAW:

Gambar 2. 1 Algoritma Simple Additive Weighting

Sumber: (Saputra, 2020)

Langkah-langkah dalam metode *Simple Additive Weighting* (SAW) ialah sebagai berikut:

- 1. Menentukan kriteria-kriteria yang bakal dijadikan acuan dalam pengambilan keputusan, yaitu Ci.
- 2. Menentukan rating kecocokan setiap alternatif pada setiap kriteria.
- 3. Membuat matriks keputusan berdasarkan kriteria (Ci) kemudian melakukan normalisasi matriks berdasarkan persamaan yang disesuaikan dengan jenis atribut.
- 4. Hasil akhir diperoleh dari proses pengurutan yaitu penjumlahan dari perkalian matriks ternormalisasi R dengan vektor bobot sehingga diperoleh nilai terbesar yang dipilih sebagai alternatif terbaik (Ai) sebagai solusi.

Rumus untuk melakukan normalisasi tersebut:

1. Untuk benefit criteria

$$R_{ij} = x \frac{Xij}{Max_i x_{ij}}$$

Rumus 2. 1 Benefit criteria

, Jika J adalah benefit criteria

Sumber: (Saputra, 2020)

2. Untuk cost criteria

$$R_{ij} = x \frac{Min_i x_{ij}}{Xij}$$

Rumus 2. 2 Cost Criteria

, Jika J adalah cost criteria

Sumber: (Saputra, 2020)

Dengan:

 R_1 = nilai rating kinerja normalisasi

 x_i = nilai atribut yang dimiliki dari setiap kriteria

 Max_i Xij = nilai terbesar dari setiap kriteria i

 $Minx_i Xij = nilai terkecil dari setiap kriteria i$

Dimana R_{ij} adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut c_j ,

$$i = 1.2...$$
m dan j = 1,2,...n

Nilai preferensi untuk setiap alternatif (v_i) , ialah sebagai berikut:

$$V_i = \sum_{j=i}^n w_j r_{ij}$$

Rumus 2. 3 alternatif (Vi)

Sumber: (Saputra, 2020)

 V_i = urutan untuk setiap alternatif

 w_i = nilai bobot dari setiap kinerja

 r_{ij} = nilai rating kinerja ternomalisasi

Nilai v_i yang lebih besar mengindikasikan bahwa alternatif Ai lebih dipilih.

(Saputra, 2020) Metode *Simple Addtive Weighting* (SAW) memiliki kelebihan dan kekurangan seperti berikut:

Kelebihan dari model *Simple Additive Weighting* (SAW) dibandingkan dengan model pengambilan keputusan yang lain adalah:

- 1. Kemampuan melakukan penilaian secara lebih tepat, karena didasarkan pada nilai kriteria dan bobot preferensi yang sudah ditentukan.
- 2. Total perubahan nilai yang dihasilkan lebih banyak, sehingga sangat relevan untuk menyelesaikan masalah pengambilan keputusan.
- 3. Mampu menyeleksi alternatif terbaik dari sejumlah alternatif yang ada.

Bukan hanya memiliki kelebihan metode SAW juga memiliki kelemahan, antara lain:

- 1. Harus menentukan bobot pada setiap atribut.
- 2. Data yang dimasukkan harus benar dan tepat agar tidak menimbulkan kesalahan pada saat pembobotan dan urutan kriteria.
- 3. Harus membuat matriks keputusan.
- 4. Keakuratan hasil kurang, hal ini dikarenakan kriteria yang ditentukan harus dinamis dan memiliki cakupan yang luas.

2.1.4 Penjurusan pada sekolah

Berdasarkan Peraturan Pemerintah Republik Indonesia Nomor 66 Tahun 2010 yang merupakan perubahan atas Peraturan Pemerintah Nomor 17 Tahun 2010 mengenai pengelolaan dan penyelenggaraan pendidikan, disebutkan dalam Pasal 1 Ayat 15 bahwa Sekolah Menengah Kejuruan (SMK) adalah satuan pendidikan formal yang menyelenggarakan pendidikan berbasis kejuruan pada jenjang menengah. SMK ditujukan sebagai kelanjutan dari jenjang Sekolah Menengah Pertama (SMP), Madrasah Tsanawiyah (MTs), atau bentuk pendidikan sederajat lainnya, termasuk program penyetaraan yang setara dengan SMP/MTs. Firdaus (2012:398) mengemukakan bahwa SMK secara prinsip merupakan lembaga pendidikan yang berfokus pada kejuruan dan ditujukan untuk mempersiapkan peserta didik menjadi tenaga kerja tingkat menengah yang siap memasuki dunia kerja dengan sikap profesional. Sejalan dengan hal tersebut, Margunani dan Nila (2012:2) menyatakan bahwa keunggulan utama dari pendidikan kejuruan terletak pada pemberian kesempatan kepada peserta didik untuk menjalani proses pembelajaran yang melibatkan pengalaman langsung di lingkungan industri atau dunia kerja. Melalui pendekatan ini, siswa tidak hanya memperoleh pemahaman teoretis, tetapi juga mendapatkan keterampilan praktis yang relevan dengan bidang kejuruan yang dipelajarinya, sehingga mampu memberikan bekal kompetensi yang dibutuhkan di dunia profesional (Farra Shazrena et al., 2022).

Proses penjurusan umumnya dilakukan ketika seorang siswa telah menyelesaikan jenjang Sekolah Menengah Pertama (SMP). Pada tahap ini, siswa dihadapkan pada dua pilihan jalur pendidikan lanjutan, yaitu Sekolah Menengah

Atas (SMA) dan Sekolah Menengah Kejuruan (SMK). Di tingkat SMA, siswa dapat memilih antara jurusan Ilmu Pengetahuan Alam (IPA) atau Ilmu Pengetahuan Sosial (IPS). Sementara itu, SMK menawarkan berbagai program keahlian yang lebih beragam sesuai bidang tertentu. Setiap program keahlian di SMK dirancang untuk mengembangkan keterampilan siswa berdasarkan minat, bakat, serta pencapaian akademik. Penentuan jurusan umumnya dilakukan berdasarkan pilihan siswa yang mengacu pada ketiga aspek tersebut saat proses pendaftaran berlangsung. Namun demikian, dalam praktiknya kerap ditemui kendala, terutama ketika nilai akademik siswa tidak memenuhi syarat untuk masuk ke jurusan yang menjadi pilihannya, sehingga berpotensi menghambat penempatan yang sesuai dengan potensi dan minat individu tersebut (Wahid Hasyim, Errissya Rasywir, 2023).

Berikut merupakan peningkatan siswa mendaftar di SMK Negeri 7 Batam dari tahun 2021 s.d 2024 dan jurusan yang menjadi favorit yang diminati siswa/i.

Tahun Pelajaran 2021 / 2022 PPDB 2021					
No.	Io. KOMPETENSI KEAHLIAN		KELAS		
NO.	ROWFETENSI KEAHLIAN	X	XI	XII	Total
1	Teknik Jaringan Akses dan Telekomunikasi	111	76	121	308
2	Teknik Instalasi Tenaga Listrik	112	77	-	189
3	Multimedia	151	135	119	405
4	Rekayasa Perangkat Lunak	112	76	108	296
5	Teknik Komputer Jaringan	189	173	68	430
Total		675	537	416	1628
Tahui	 n Pelajaran 2022 / 2023 PPDB 2022				
No. KOMPETENSI KEAHLIAN		KELAS		Total	
INU.	KOWI ETENSI KEAIILIAN	X	XI	XII	1 Otal
1	Desain Komunikasi Visual / Multimedia	158	149	136	443

	D				
	Pengembangan Perangkat lunak dan Gim / Rekayasa Perangkat 2 Lunak		110	76	205
1			110	76	305
2			100		200
3	Teknik Ketenagalistrikan		109	77	309
	Teknik Jaringan Akses dan				
4	Telekomunikasi		111	74	265
5	Teknik Komputer Jaringan	193	190	172	555
	Total	673	669	535	1877
Tahun	Pelajaran 2023 / 2024 PPDB 2023				
.	IZOMBETENIOLIZE ALILIANI		KELA	S	TD 4 1
No.	KOMPETENSI KEAHLIAN	X	XI	XII	Total
	Desain Komunikasi Visual /				
1	Multimedia	187	158	148	493
	Pengembangan Perangkat lunak				
	dan Gim / Rekayasa Perangkat				
2	Lunak	109	117	109	335
3	Teknik Ketenagalistrikan	207	116	108	431
	Teknik Jaringan Akses dan				
4	Telekomunikasi	123	78	109	310
5	Teknik Komputer Jaringan	150	193	188	531
	Total	776	662	662	2100
Tahun	Pelajaran 2024 / 2025 PPDB 2024				
Tanun	1 Clajaran 2024 / 2023 1 1 DB 2024		KELA	S	
No.	KOMPETENSI KEAHLIAN	X XI XII			Total
	Desain Komunikasi Visual /	Λ	ΛΙ	AII	
1	Multimedia	153	186	153	492
1	Pengembangan Perangkat lunak	133	100	133	492
2	dan Gim / Rekayasa Perangkat	154	109	117	380
2	Lunak	134	10)	117	300
3	Teknik Ketenagalistrikan	160	202	114	476
3	Teknik Jaringan Akses dan	100	202	117	770
4	Telekomunikasi	74	120	73	267
5	Teknik Komputer Jaringan	212	145	187	544
	Total	753	762	644	2159
-	m 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	202	1.50	<u> </u>	<u> </u>
Data J	urusan Terbanyak Dipilih Sejak Tahı	ın 2021 T			1
No.	KOMPETENSI KEAHLIAN	X	KELAS		Total
			XI	XII	
	Desain Komunikasi Visual /				4000
1	Multimedia	649	628	556	1833

	Pengembangan Perangkat lunak				
2	dan Gim / Rekayasa Perangkat	494	412	410	1316
	Lunak				
3	Teknik Ketenagalistrikan	602	504	299	1405
	Teknik Jaringan Akses dan				
4	Telekomunikasi	388	385	377	1150
5	Teknik Komputer Jaringan	744	701	615	2060
	Total	2228	2630	2257	7115

Tabel 2. 1 Data Jumlah Siswa/i SMK Negeri 7 Batam

(Sumber: SMK Negeri 7 Batam)

Berikut jumlah siswa/i di SMK Negeri 7 Batam :

- 1. Tahun Pelajaran 2021 / 2022 PPDB 2021 Jumlah 1628 siswa/i.
- 2. Tahun Pelajaran 2022 / 2023 PPDB 2022 Jumlah 1877 siswa/i.
- 3. Tahun Pelajaran 2023 / 2024 PPDB 2023 Jumlah 2100 siswa/i.
- 4. Tahun Pelajaran 2024 / 2025 PPDB 2024 Jumlah 2159 siswa/i.

Data Jurusan Terbanyak Dipilih Sejak Tahun 2021 s.d 2025 SMK Negeri 7 Batam :

- 1. Teknik Komputer Jaringan: 2060 siswa/i.
- 2. Desain Komunikasi Visual / Multimedia: 1833 siswa/i.
- 3. Teknik Ketenagalistrikan : 1405 siswa/i.
- 4. Pengembangan Perangkat lunak dan Gim / Rekayasa Perangkat Lunak : 1316 siswa/i.
- 5. Teknik Jaringan Akses dan Telekomunikasi : siswa/i.

Dari jumlah siswa terbanyak dari jurusan, jurusan TKJ favorit. Untuk skor urutan jurusan :

- a Teknik Komputer Jaringan: 1
- b Desain Komunikasi Visual / Multimedia: 2
- c Teknik Ketenagalistrikan: 3
- d Pengembangan Perangkat lunak dan Gim / Rekayasa Perangkat Lunak : 4
- e Teknik Jaringan Akses dan Telekomunikasi : 5

 Skor nilai yang dibutuhkan untuk masing-masing jurusan sebagai berikut :
- a Teknik Komputer Jaringan: 90 s.d 100
- b Desain Komunikasi Visual / Multimedia: 80 s.d 100
- c Teknik Ketenagalistrikan: 75 s.d 100
- d Pengembangan Perangkat lunak dan Gim / Rekayasa Perangkat Lunak : 70s.d 100
- e Teknik Jaringan Akses dan Telekomunikasi: 65 s.d 100

Dari data pada tabel tersebut, jurusan yang paling banyak diminati dan memiliki syarat nilai 90 s.d 100 yaitu Teknik Komputer dan Jaringan.

2.1.5 Unified Modeling Language (UML)

Dalam menggambarkan suatu pengerjaan suatu sistem menggunakan UML bagian bahan pemodelan yang standar umum dalam bidang ilmu komputer serta rekayasa perangkat lunak, jadi kerangka yang diterapkan dapat menggunakan diagram *use case* diagram untuk menggambarkan suatu proses kerja dalam sistem yang dirancang (Pratama et al., 2021).

Di bawah ini merupakan diagram yang digunakan dalam penelitian yang di kerjakan, diantara-Nya:

1. Use Case Diagram

Diagram difungsikan melalui rekayasa perangkat lunak untuk diterapkan secara visual agar menggambarkan interaksi berbagai faktor seperti *user* atau sistem luar serta sistem dalam diagram ini memvisualisasikan bagaimana *user* dengan suatu sistem untuk mencapai tujuan tertentu. Penggambaran Aktor menggambarkan sebagai bentuk *user*.

No.	Simbol	Deskripsi
1.	Aktor	Aktor merupakan representasi dari
		entitas yang memiliki hubungan atau
		interaksi langsung dengan sistem, baik
	\circ	berupa individu pengguna, sistem
	\perp	eksternal, maupun perangkat yang
		terlibat dalam proses kerja sistem.
2.	Use Case	Use case merupakan deskripsi
		aktivitas atau fungsi yang dilakukan
		oleh aktor untuk mencapai tujuan
		tertentu, serta menggambarkan bentuk
		interaksi antara aktor dan sistem
		melalui serangkaian langkah yang
		saling berkaitan.
3.	Include	Include merupakan hubungan dalam
		use case diagram yang menunjukkan
		bahwa suatu fungsi atau rangkaian

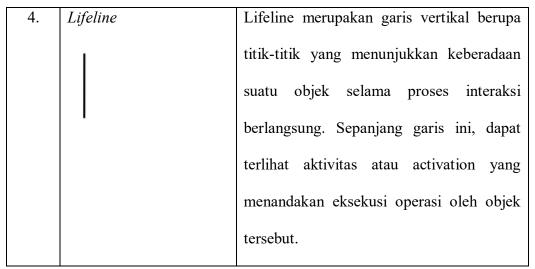
	-	aktivitas merupakan bagian yang
		selalu dipanggil oleh use case lain
		sebagai bagian dari proses
		pelaksanaannya.
4.	Asosiasi	Asosiasi. Garis dengan panah dengan
		menghubungkan aktor dan use case,
		menunjukkan keterlibatan aktor dalam
		use case tersebut.

Tabel 2. 2 Use Case Diagram

2. Activity Diagram

Activitiy Diagram merupakan diagram dalam Unified Modeling Language (UML) untuk digunakan menggambar aliran kerja serta aktivitas suatu proses dalam sistem. Diagram ini juga menyajikan sederet proses, aksi, dan keputusan yang terjadi setiap waktu (Yuliawati, 2024).

No.	Simbol	Deskripsi
1.	Initial state	Initial state merupakan titik awal dari
		dimulainya alur proses dalam sebuah
		activity diagram. Dalam satu activity
	•	diagram, hanya diperbolehkan terdapat
		satu initial state sebagai penanda
		dimulainya aktivitas atau proses sistem.
2.	Transition	Transition berfungsi sebagai penghubung
		antara satu aktivitas dengan aktivitas


		berikutnya, sehingga menggambarkan
	\longrightarrow	urutan proses yang terjadi setelah aktivitas
		sebelumnya selesai.
3.	Activity	Activity adalah suatu tindakan atau
		pekerjaan yang dilakukan sebagai bagian
		dari rangkaian proses dalam alur kerja.
4.	Decision	Decision berperan untuk menggambarkan
		kondisi atau pilihan yang memungkinkan
		terjadinya lebih dari satu jalur transisi,
		sehingga memastikan alur kerja dapat
	\	bercabang sesuai dengan kondisi yang ada.

Tabel 2. 3 Activity Diagram

3. Sequence Diagram

Sequence Diagram ialah jenis diagram dalam UML yang menggambarkan hubungan objek dalam suatu sistem secara kronologis. Squence Diagram memilih objek-objek untuk berkomunikasi antara satu dan yang lain secara berurutan dalam menjalankan suatu aturan dan proses (Yuliawati, 2024).

No.	Simbol	Deskripsi
1.	Entity Class	Entity class adalah komponen dalam sistem
		yang merepresentasikan entitas-entitas utama yang membentuk struktur dasar sistem, serta berperan sebagai acuan awal dalam perancangan basis data.
2.	Recursive	Recursive merupakan proses pengiriman pesan oleh suatu objek kepada dirinya sendiri dalam suatu alur interaksi atau pemanggilan fungsi yang berulang.
3.	Activation	Activation menggambarkan waktu di mana suatu objek menjalankan suatu operasi atau fungsi. Panjang dari simbol ini menunjukkan lamanya proses eksekusi berlangsung selama interaksi terjadi.

Tabel 2. 4 Squence Diagram

4. Class Diagram

Class Diagram merupakan jenis diagram dalam UML yang dipakai untuk proses menggambar struktur statis dari suatu sistem atau aplikasi berorientasi objek (Yuliawati, 2024).

No.	Sir	nbol	Deskripsi
1.	Ke	las	Kelas merupakan komponen utama
		Nama_kelas	dalam class diagram yang digunakan untuk merepresentasikan suatu objek
		+atribut	dalam sistem, yang di dalamnya
		+operasi()	mencakup atribut (data) dan operasi
			(fungsi atau metode) yang
			menggambarkan perilaku dari objek
			tersebut.

2.	Asosiasi	Hubungan antar kelas dalam
		pemodelan sistem umumnya
		ditunjukkan melalui relasi, salah
		satunya adalah asosiasi, yang sering
		kali dilengkapi dengan keterangan
		multiplicity untuk menggambarkan
		jumlah keterlibatan antar objek dalam
		relasi tersebut.

Tabel 2. 5 Class Diagram

2.1.6 Database

Mengumpulkan data pada objek penelitian serta mengimplementasikan beberapa kriteria dan bobot yang ada pada penelitian ke dalam sistem. Data yang dikumpulkan dalam bentuk tabel atau aplikasi yang sudah tersedia di beberapa sistem database. Setelah menentukan data dalam penelitian maka akan disusun saling berhubungan untuk mencari hasil (Wahid Hasyim, Errissya Rasywir, 2023).

Dalam database penelitian ini menggunakan MySQL. MySQL sendiri merupakan suatu perangkat lunak database relasi atau Relasional Database manajemen sistem (RDBMS) yang didistribusikan gratis di bawah lisensi GPL (General Public License) (Nendya et al., 2023). Tabel dapat dilihat sebagai berikut

id_siswa	INT (Primary Key)
nama	VARCHAR(100)

:

nilai_matematika	FLOAT
nilai_ipa	FLOAT
nilai_ips	FLOAT
minat_jurusan	VARCHAR(50)

Tabel 2. 6 Siswa

id_jurusan	INT (Primary Key)
nama_jurusan	VARCHAR(50)

Tabel 2. 7 Jurusan

Berikut contoh tabel dengan primary key dalam penentuan jurusan SMK :

SQL

```
CREATE TABLE siswa (
```

```
id_siswa INT AUTO_INCREMENT PRIMARY KEY,
```

nama VARCHAR(100) NOT NULL,

nilai_matematika FLOAT NOT NULL,

nilai_ipa FLOAT NOT NULL,

nilai_ips FLOAT NOT NULL,

minat_bakat VARCHAR(50)

);

CREATE TABLE jurusan (

```
id_jurusan INT AUTO_INCREMENT PRIMARY KEY,
nama_jurusan VARCHAR(100) NOT NULL
);

CREATE TABLE penentuan_jurusan (
id_penentuan INT AUTO_INCREMENT PRIMARY KEY,
id_siswa INT,
id_jurusan INT,
nilai_akhir FLOAT,

FOREIGN KEY (id_siswa) REFERENCES siswa(id_siswa),
FOREIGN KEY (id_jurusan) REFERENCES jurusan(id_jurusan)
);
```

id_siswa di tabel siswa adalah primary key yang unik untuk setiap siswa.

id_jurusan di tabel jurusan sebagai primary key yang membedakan tiap jurusan.

Tabel penentuan_jurusan menghubungkan siswa dengan jurusan yang direkomendasikan berdasarkan hasil penilaian (nilai_akhir). id_penentuan sebagai primary key untuk data ini. Dengan struktur ini, setiap siswa, jurusan, dan hasil penentuan jurusan dapat dikelola dengan unik dan terstruktur menggunakan primary key sebagai identitas utama. Penjelasannya dapat diliat sebagai berikut

- INT: Singkatan dari integer, artinya tipe data untuk angka bulat tanpa desimal. Contohnya 1, 2, 100, dan seterusnya. Biasanya dipakai untuk id atau nomor urut.
- 2. VARCHAR(100): Tipe data untuk menyimpan teks atau karakter, dengan batas maksimal 100 karakter.
- 3. FLOAT: Tipe data angka desimal, artinya bisa menyimpan nilai dengan angka di belakang koma, misalnya 85.5 atau 78.25. Digunakan untuk nilai yang tidak harus bulat, seperti nilai rapor.
- 4. Primary Key: Kolom khusus yang berfungsi sebagai identitas unik untuk setiap baris data di tabel. Tidak boleh ada dua data dengan primary key yang sama.

2.1.7 Tools

Perangkat kerja yang digunakan dalam membuat sistem yang mempermudah pengerjaan dalam menghasilkan tujuan. Seperti dalam membuat web, perangkat yang digunakan untuk mempermudah menyusun dalam mendesain web salah satunya Visual Code. Visual Code memudahkan dalam pengerjaan code dalam mendukung beberapa jenis bahasa pemrograman. Cara lainnya ialah dapat memberi variasi warna sesuai dalam fungsi Rangkaian code (Firnando et al., 2023).

(Nendya et al., 2023) Dalam penjelasan Visual Studio Code merupakan sebuah teks editor ringan dan mahir yang dibuat oleh Microsoft untuk sistem operasi *multi platform*, artinya tersedia juga untuk versi Linux, Mac, dan Windows. Teks editor ini secara langsung mendukung bahasa pemrograman *Javascript*,

Typescript, dan *Node*. Js, serta bahasa pemrograman lainnya dengan bantuan *plugin* yang dapat dipasang via *marketplace* Visual Studio Code seperti: C++, C#, *Python*, Go, Java, PHP, dst (Ummy Gusti Salamah, 2021).

Gambar 2. 2 Visual Studio Code

Sumber: (dumbways.id)

Sedangkan dalam membuat program, bahasa pemrograman yang akan digunakan ialah PHP. PHP merupakan *script* untuk pemrograman *script* web server-*side*, *script* yang membuat dokumen HTML secara *on the fly*, maksudnya dokumen HTML yang dihasilkan dari suatu aplikasi bukan dokumen HTML yang dibuat dengan menggunakan editor teks atau editor HTML (Nendya et al., 2023).

Dalam merancang *framework*, *Laravel* menjadi pilihan yang memiliki fitur sesuai dengan kebutuhan sistem administratif pendidikan serta membangun aplikasi web yang terstruktur, aman, dan memiliki performa yang baik. Fitur yang digunakan dalam *laravel* memiliki sistem routing yang kuat, ORM (*Object-Relational Mapping*) untuk pengelola database serta struktur yang fleksibel untuk pengembangan dan pemeliharaan aplikasi yang akurat (Usman et al., 2024).

Gambar 2. 3 Framework Laravel

Sumber: (santrikoding.com)

2.1.8 Website

Saat ini teknologi mempunyai peran penting dalam masyarakat untuk tujuan pembangunan kemajuan bangsa. Misalnya internet yang mempunyai pengetahuan informasi yang lengkap. Salah satu tool yang dibutuhkan untuk mencari informasi pada internet tersebut adalah browser. Era modern ini browser telah berkembang pesat dari segi fitur maupun segi keamanannya (Daulay & Indrayani, 2022).

Website menurut Sebok, Vermat, dan *group* (2018: 70) merupakan kumpulan halaman terhubung yang didalam-Nya terdapat beberapa barang berupa dokumen dan gambar yang tersimpan di dalam web server. *Web App* adalah sebuah aplikasi yang berada dalam web server yang bisa *user* akses melalui browser. Web app biasanya menampilkan data user dan informasi dari server. Pendapat Dillon, Schonthaler, dan Vossen (2017: 1), pada mula 1990, Worldwide web atau website merevolusi kehidupan pribadi maupun profesional. Web menjadi situs yang terus berkembang dan sebagai perpustakaan informasi yang ada di mana-mana yang dapat diakses melalui mesin pencari dan portal. Web menjadi tempat penyimpanan

media yang memfasilitasi *hosting* dan berbagi sumber daya yang sering kali gratis dan sebagai pendukung layanan *do-it-yourself*. Web juga menjadi platform perdagangan tempat orang dan perusahaan semakin menjalankan bisnisnya (Dr. Vladimir, 2021).

2.1.9 Flowchart

Bagan alur atau yang sering disebut *Flowchart* merupakan diagram yang memvisualisasikan alur dari keputusan dalam melakukan pengerjaan dari suatu program. Setiap alur yang di kerjakan diproses dalam bentuk diagram dan dihubungkan dengan garis dan anak panah (Yuliawati, 2024).

No.	Simb	ol	Deskripsi					
1.	Flow Line		Flow	line	digunakan	untuk		
			menghul	oungkan	antar simbol	(seperti		
		↑	proses,	keputusa	an, input/outp	ut) dan		
	→	menunjukkan arah jalannya proses dari s						
		1 +	langkah ke langkah berikutnya.					
			Dari simbol "Start", flow line mengarah ke					
			simbol "Input data", lalu dilanjutkan ke					
			"Proses"	, dan sete	rusnya.			
2.	Terminator		Menanda	ai dimulai	nya proses (Star	rt)		
			Digunak	an untuk	menunjukkan	langkah		
	()	pertama	dalam sua	atu alur proses.			
			Menandai berakhirnya proses (End)					

		Digunakan untuk mengakhiri alur kerja						
		atau program.						
3.	Process Menunjukkan langkah atau tindakan ya							
		memproses data atau menjalankan instruksi						
		tertentu.						
		Digunakan dalam setiap tahapan di mana						
		ada transformasi data atau eksekusi						
		perintah.						
4.	Decision	Digunakan saat sistem harus memilih						
		antara dua atau lebih kondisi berdasarkan						
		suatu pernyataan atau pertanyaan.						
	()	Hasil keputusan biasanya "Ya/Tidak"						
		(Yes/No) atau "Benar/Salah" (True/False),						
	•	yang akan menentukan arah alur						
		selanjutnya.						

Tabel 2. 8 Flowchart

2.2 Penelitian Terdahulu

(Mayadi & Anggrawan, 2022) Dalam penelitian perlu melampirkan ringkasan dari kasus yang saling berkaitan yang telah teruji sebelumnya, penelitian ini bakalan mencantumkan kasus penelitian yang telah berhasil tercapai sebagai penguat dalam penelitian.

NT.	T 1 1	D 1'	NT T 1	IZ 4
No	Judul	Penulis	Nama Jurnal	Keterangan
	Artikel		dan Akreditasi	

		T	Vol. No.		
			Vol., No., dan		
			Tahun		
1.	Aplikasi	Adhika	Volume.6	Jurnal Ilmiah	Penelitian ini
1.	Sistem	Pramita	, No.1,	Intech :	bertujuan
	Pendukung	Widyassari	Mei 2024	Information	membuat Sistem
	Keputusan	Widyassaii	10101 2024	Technology	Pendukung
	Penentuan			Journal of	
	Jurusan			UMUS, Sinta	_
				4	C
	Menggunak an Metode			4	
					SMK Negeri 1
	Simple				Cepu yang
	Additive				berguna
	Weighting				merekomendasi
	(SAW)				kan jurusan yang
					tepat kepada
					calon siswa/I
					berdasarkan nilai
					yang diperoleh.
2.	Sistem	Moh	Volume.	INFOTECH:	Penelitian ini
	Pendukung	Shidqon,	9 No. 2	Journal Of	bertujuan
	Keputusan	Goldie	Novembe	Technology	membangun
	Menentuka	Gunadi	r 2023	Information,	Sistem
	n			Sinta 4	Pendukung
	Kelayakan				Keputusan
	Artikel				menggunakan
	Jurnal				metode SAW
	Ilmiah				untuk
	Dengan				mempercepat
	Metode				penilaian
	Simple				kelayakan di
	Additive				LPFEB
					Universitas

	Weighting				Trisakti. Sistem
	(SAW)				menilai
	(Studi				otomatis,
	Kasus :				memberikan
	Lembaga				rekomendasi
	Penerbit				kelayakan, dan
	Fakultas				hasilnya dapat
	Ekonomi				diakses Online
	Dan Bisnis				dengan
	Universitas				pengiriman
	Trisakti)				komentar via
					email jika
					diperlukan.
3.	Sistem	Didik	Volume.	INFOTECH:	Pada penelitian
	Pendukung	Setiyadi,	8 No. 1	Journal Of	ini dapat
	Keputusan	Syahbaniar	Juni 2022	Technology	disimpulkan
	Menentuka	Rofiah		Information,	sistem
	n Guru			Sinta 4	pendukung
	Teladan				keputusan
	Pada				menentukan
	Sekolah				guru teladan
	Dasar				pada Sekolah
	Menggunak				Dasar
	an Metode				Menggunakan
	Simple				Metode Simple
	Additive				Additive
	Weighting				Weighting
					(SAW),
					bertujuan untuk
					memilih guru
					yang masuk
					kandidat

					pemilihan guru
					teladan, setelah
					melalui tahapan
					metode SAW
4.	Sistem	Ina	Volume 8	Evolusi: Jurnal	Penelitian ini
	Pendukung	Maryani,	No.2	Sains dan	menciptakan
	Keputusan	Vadlya	Septemb	Manajemen,	sistem berbasis
	Penentuan	Ma'arif,	er 2020	Sinta 4	web yang
	Beasiswa	Neni Sinta			menggunakan
	Berbasis	Kristiana			metode SAW
	Web				untuk membantu
	Menggunak				menentukan
	an Metode				penerima
	Simple				beasiswa. Sistem
	Additive				ini melihat nilai,
	Weighting				pendapatan, dan
	(SAW)				jumlah orang
					yang didukung
					seseorang.
					Tujuannya
					adalah untuk
					memudahkan
					sekolah dalam
					memilih
					penerima
					beasiswa dengan
					cara yang lebih
					baik dan lebih
					cepat.
5.	Sistem	Sinta Devi	Volume.	Jurnal Sistem	Penelitian ini
	Pendukung	Damayanti,	6, No.2,	Informasi dan	membuat sistem
	Keputusan	Gafrun	(2021)	Teknik	SPK

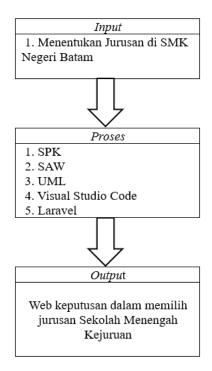
	Penentuan			Komputer,	menggunakan
	Karyawan			Sinta 4	metode SAW.
	Teladan				Gunanya, buat
	Dengan				membantu
	Menggunak				perusahaan
	an Metode				memilih
	Simple				karyawan
	Additive				terbaik
	Weighting				berdasarkan
	(SAW)				kriteria yang
					sudah
					ditentukan.
					proses seleksi
					lebih mudah dan
					diharapkan bisa
					membuat kinerja
					karyawan
					semakin bagus.
6.	Sistem	Lusa Indah	Volume	Jurnal Teknik	Penelitian ini
	Pendukung	Prahartiwi,	8, No.1,	Komputer	menggunakan
	Keputusan	Dede	Januari	AMIK BSI,	sistem
	Penerima	Rosita	2022	Sinta 4	pendukung
	Bantuan				keputusan
	Langsung				menggunakan
	Tunai				metode SAW
	Menggunak				untuk memilih
	an Simple				penerima BLT di
	Additive				Desa Suka
	Weighting				tenang.
	(SAW) di				Berdasarkan
	Desa				kriteria kondisi
	Sukatenang				rumah,

					penghasilan,
					tanggungan, dan
					pekerjaan,
					alternatif terbaik
7.	Sistem	Zulfikar,	Volume	JURSIMA	Penelitian ini
	Pendukung	Umi	10 No. 1	Jurnal Sistem	menggunakan
	Keputusan	Chotijah	April	Informasi dan	metode AHP dan
	Penilaian		2022	Manajemen	MAUT
	Kinerja			STMIK GICI,	membuat nilai
	Karyawan			Sinta 5	kinerja
	Menggunak				karyawan di
	an Metode				Percetakan
	AHP Dan				Subur Jaya. Dari
	MAUT				30 karyawan
					yang dinilai
					berdasarkan 5
					kriteria, sistem
					berhasil
					membuat
					peringkat.
					Hasilnya,
					terdapat 10
					karyawan
					terbaik dan 10
					karyawan
					kurang baik.
					Sisanya sesuai
					standar
					perusahaan.
8.	Implementa	Sofin	Vol.16,	JURNAL	Dalam penelitian
	si Metode	Rendian	No.1, Juli	ELEKTRONI	ini Karyawan
		İ	Ī	İ	İ

			KOMPUTER,	penting dalam
Weighting	Husni	al	Sinta 5	mendukung
(SAW)	Amin			pencapaian
Dalam				tujuan
Sistem				perusahaan.
Pendukung				Untuk menilai
Keputusan				karyawan
Karyawan				berprestasi
Teladan				secara objektif,
				dibutuhkan
				sistem
				pendukung
				keputusan.
				Metode Simple
				Additive
				Weighting
				(SAW)
				digunakan
				karena mampu
				memberikan
				bobot pada
				setiap kriteria
				penilaian. Hasil
				dari sistem ini
				berupa peringkat
				karyawan
				terbaik yang
				dapat digunakan
				perusahaan
				untuk
				memberikan
				penghargaan

					secara adil dan
					efisien.
9.	Sistem	Taufik	Volume.1	JURNAL	Dalam peneltian
	Pendukung	Kurnialens	3, No.1,	ILMIAH	ini
	Keputusan	ya,	Juli 2020	ELEKTRONI	menggunakan
	Pelanggan	Rohmad		KA DAN	Sistem
	Terbaik	Abidin		KOMPUTER,	Pendukung
	Dan			Sinta 5	Keputusan
	Pemberian				(SPK) adalah
	Diskon				sistem yang
	Menggunak				membantu
	an Metode				pengambilan
	SAW &				keputusan dalam
	TOPSIS				kondisi yang
					tidak
					sepenuhnya
					terstruktur.
					Untuk
					menghadapi
					tantangan
					pencapaian
					target tahunan
					dan persaingan
					harga,
					perusahaan
					menggunakan
					SPK berbasis
					PHP yang
					menggabungkan
					metode SAW
					untuk memilih
					pelanggan
	<u> </u>				

						terbaik	dan
						TOPSIS	untuk
						menentuk	an
						diskon	khusus.
						Sistem	ini
						memudah	kan
						perusahaa	ın
						dalam	
						memberik	kan
						pengharga	aan
						secara te	pat dan
						meningka	ıtkan
						efektivita	s
						keputusar	1
						promosi.	
10.	Penerapan	Yanthi	Volume.7	Generation	on	Sistem	
	Metode	Charolina,	No.314	Journal,	Sinta	Pendukur	ng
	SAW	Honni,	Desembe	5		Keputusa	n
	Dalam	Yohannes	r 2023			(SPK)	
	Menentuka	Fernandes				membant	u
	n Juara	Andry				organisas	i
	Lomba					memilih	
	Kategori					alternatif	terbaik
	Vocal					dan	sering
	Group di					digunaka	n untuk
	LPPN					peranking	gan,
						seperti	
						menentuk	an
						pemenang	3
					l.		


		penelitian ini,	
		metode	Simple
		Additive	
		Weighting	,
		(SAW)	
		digunakar	n untuk
		memilih	juara
		vocal	group
		LPPN	dengan
		mempertimbang	
		kan atrib	ut dan
		bobot	secara
		efektif.	

Tabel 2. 9 Penelitian Terdahulu

(Sumber : Data Penelitian 2025)

2.3 Kerangka Pikiran

Kerangka Berpikir merupakan langkah-langkah atau tahapan yang dilakukan peneliti untuk mencapai hasil yang dituju, persiapan dari materi teori hingga ke pengaplikasian dengan *software* dalam memecahkan masalah yang berdasarkan pada pemikiran peneliti. Berikut kerangka berpikir dalam penelitian ini.

Gambar 2. 4 Kerangka Pemikiran

Sumber: Data Penelitian (2025)

Penentuan jurusan bagi siswa di SMK Negeri Batam merupakan langkah penting dalam proses pendidikan menengah kejuruan, karena akan memengaruhi jalur karier dan kompetensi yang dikuasai siswa di masa depan. Untuk membantu proses ini, dibutuhkan sistem yang mampu memberikan rekomendasi jurusan secara objektif dan tepat sasaran. Oleh karena itu, dibangunlah sistem berbasis web yang dapat membantu dalam menentukan jurusan yang paling sesuai dengan kemampuan akademik dan minat siswa.

Sistem ini dirancang menggunakan pendekatan Sistem Pendukung Keputusan (SPK) yang memanfaatkan metode *Simple Additive Weighting* (SAW). Metode SAW digunakan karena mampu menilai dan mengurutkan alternatif (jurusan) berdasarkan nilai dan bobot dari beberapa kriteria, seperti nilai mata pelajaran, minat, dan bakat siswa. Untuk mendukung pengembangan sistem yang terstruktur

dan terdokumentasi, digunakan pula Unified Modeling Language (UML) sebagai alat bantu perancangan, yang menggambarkan alur proses serta relasi antar komponen sistem.

Dalam tahap implementasi, sistem dikembangkan menggunakan Visual Studio Code sebagai lingkungan pengkodean, dengan Laravel sebagai framework utama berbasis PHP. Laravel dipilih karena fleksibilitas dan keamanannya dalam membangun aplikasi web modern. Hasil akhir dari proses ini adalah sebuah aplikasi web yang mampu memberikan keputusan otomatis dalam memilih jurusan SMK, yang bisa diakses oleh siswa dan pihak sekolah. Dengan adanya sistem ini, proses penjurusan dapat dilakukan secara efisien, transparan, dan berdasarkan analisis data yang valid.