BAB II

TINJAUAN PUSTAKA

2.1 Teori umum

2.1.1 Data mining

Data mining adalah proses yang menggunakan teknik analisis seperti statistik, matematika, kecerdasaran buatan, dan machine learning untuk mencari sebuah informasi dan pengetahuan yang penting dari sebuah kumpulan data dalam jumlah yang besar, tujuan dari data mining adalah menemukan pola tersembunyi yang tidak mudah di ketahui secara manual(Candra Susanto et al., n.d.; Program Studi Sistem Informasi et al., 2020)

Secara sederhana data mining adalah pencarian otomatis pola dalam basis data yang besar, menggunakan teknik komputasional campuran dari statistik, pembelajaran mesin dan penggunaan pola. Data mining merupakan bidang dari beberapa bidang keilmuan yang menyatukan teknik dari pembelajaran mesin, pengenelan pola statistik, database, dan visualisasi untuk penanggapan permasalahan pengambilan informasi daru database dengan jumlah yang besar (Fathurrozi et al., 2023)

2.1.2 Pengelompokan Data Mining

Data mining dikelompokan menjadi 6 menurut (Listanto & Meisella Kristania, 2022)

1. Dekripsi

Dekripsi dari pola dan kecendrungan sering memberikan sebuah penejelasan untuk suatu pola atau kecenderungan dalam data tersebut.

2. Estimasi

Estimasi mirip dengan klasifikasi, perbedaan terletak pada jenis variabel target yang digunakan. Dalam estimasi, variabel target berupa nilai numerik atau angka, bukan termasuk kategori. Permodelan estimasi dibangun berdasarkan data yang lengkap dan menyertakan variabel target yang akan di prediksi. Setelah model terbentuk, proses akan dilanjutkan dengan estimasi atau prediksi nilai variabel target pada data baru yang belum diketahui nilainya.

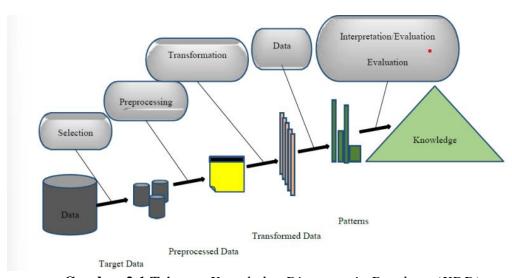
3. Prediksi

Prediksi memiliki kesamaan dengan klasifikasi dan estimasi, namun fokus utamanya adalah memperkirakan hasil dimasa depan. Artinya, nilai dari variabel atau kejadian yang diprediksi akan terjadi pada priode yang akan mendatang.

4. Classification

Proses yang bertujuan untuk menyimpulkan beberapa definisi dari sebuah grup yang terdapat target variabel kategori.

5. Clustering


Clustering adalah sebuah proses pengelompokan data atau objek yang bersadarkan kemiripan diantara objek tersebut, Objek yang dikelompokan kedalam satu kluster memliki karakteristik yang serupa, sedangkan objek yang di kluster lain berbeda secara singtifikan.

6. Asosiasi

Asosiasi adalah teknik untuk menemukan keterkaitan atau hubungan antara atribut yang muncul secara bersamanaan dalam suatu transaksi. Dalam konteks bisnis, teknik ini juga dikenal sebagai market basket analysis atau analisis keranjang belanja.

2.1.3 Knowledge Discovery in Database (KDD)

Data mining merupankan salah satu dari rangkaian Knowledge Discovery in Database (KDD). KDD berkaitan juga dengan proses integrasi teknik untuk menemukan pengetahuan dari data-data yang dikumpulkan. KDD juga mencakup interpretasi dan visualisasi pola yang ditemukan dalam data. (Tachi & Andri, 2021)Berikut 5 tahapan data mining dapat dilihat pada gambar 2.1

Gambar 2.1 Tahapan *Knowledge Discovery in Database (KDD)*

1. Selection

Data yang akan digunakan untuk seleksi data dan atribut yang digunakan untuk proses selanjutnya. Seleksi data dari sekumpulan data oprerasional dilakukan

sebelum tahapan penggalian informasi. Data hasil dari seleksi akan digunakan untuk proses data mining, dan disimpan dalam berkas yang terpisah dari data operasional.

2. Pre-processing (Cleaning)

Tahapan cleaning merupakan data hasil dari seleksi data yang akan dilakukan pemrosesan pendahuluan dan akan melakukan pembersihan data. Sebelum proses data mining dilakukan cleaning dengan tujuan untuk membuat duplikasi data, atau menghilankan data yang tidak konsisten.

3. Transformation

Merupan proses transformasion pada data yang telah dipilih untuk diubah menjadi bentuk data yang sesuai untuk diolah nantinya

4. Data mining

Data mining adalah proses mencari suatu informasi atau pola yang menarik pada data yang telah dipilih menggunakan teknik atau metode tertentu. Pemilihan metode atau algoritma sangatlah penting karena sangat berpengaruh pada tujuan dan proses dari KDD secara keseluruhan.

5. Interoretation (evaluation)

Pada tahap ini dilakukan nya indetifikasi pola-pola yang dihasilkan dari data mining. Pola informasi yang dihasilkan perlu ditampilkan kedalam bentuk yang mudah dimengerti oleh pihak yang berkepentingan

.

2.1.4 Manfaat Data Mining

Penelitian ini akan menggunakan algoritma apriori, dalam memanfaatkan teknik data transaksi penjualan yang didapatkan dari barang yang dibeli oleh konsumen saat berbelanja. Data tersebut digunakan untuk mengambil keputusan dalam pembelian suatu barang yang sangat diminati oleh konsumen dan kurang diminati oleh konsumen. Untuk memperbanyak stok barang yang paling diminati oleh konsumen dan mencukupi kebutuhan konsumen, kemudian mengurangi stok barang yang kurang laku dipasaran dan data tersebut juga dapat digunakan dalam menentukan peletakan barang sesuai permintaan konsumen. Data yang dihasilkan dapat menjadi informasi yang berguna untuk membentuk pola penjualan yang efektif. Teknik analisis kerang pasar merupan teknik yang beradapatasi pada ilmu data mining. Teknik ini digunakan untuk mencari strategi penjualan barang melalui proses pencarian asosiasi antar item data dari suatu transaksi pembelian barang dari setiap konsumen, kemudian dicari suatu hubungan antar item-item yang dijual dan akan dibeli oleh konsumen.(Daniel Purba et al., n.d.)

2.2 Teori Khusus

2.2.1 Algoritma apriori

Menurut (Qoni'ah & Priandika, 2020) Algoritma apriori merupan suatu algoritma dasar yang diusulkan oleh Agrawel & srikant pada tahun 1994 untuk penentuan frequent itemset untuk aturan asosiasi boolean. Algoritma apriori termasuk jenis aturan yang terdapat pada data minig. Aturan yang menyatakan asosiasi atau associantion rule mining merpukan salah satu teknik data mining

untuk menemukan aturan suatu kombinasi antara item. Salah satu tahap analisis asosisasi pola frequensi tinggi (frequent pattern mining). Penting atau tidak nya suatu asosiasi dapat diketahui dengan dua tolak ukur, yaitu support dan confirence, Nilai penunjang (support) adalah persentase dari kombinasi itemset tersebut dalam database sedangkan nilai kepastian (confidence) adalah kuatnya hubungan antara item dalam aturan asosiasi.

Analisis pola frequensi tertinggi dengan algoritma apriori adalah tahap mencari kombinasi item yang memenuhi syarat minimum dari nilai support sebuah item diperoleh dengan menggunakn rumus berikut:

$$Support\left(A\right) = \frac{Jumlah\ transaksi\ mengandung\ A\ x\ 100}{Total\ transaksi}$$

Untuk mencari nilai support dari 2 item diproleh dengan menggukan rumus:

Support (A,B) =
$$P \rho = (A \cap B)$$

$$Support (A,B) = \frac{\sum Transaksi \ menggandung \ A \ dan \ B \ x \ 100}{\sum transaksi}$$

Pembentukan suatu aturan asosiasi adalah aturan setelah semua pola frekuensi tertinggi ditemukan, kemudian dicari aturan asosisasi yang memenuhi syarat minimum untuk confidence dengan menghitung confidence aturan asosiasi A > B nilai confidence dari aturan $A \rightarrow B$ diproleh dengan rumus berikut:

$$Confidence = P(B \mid A) = \frac{\sum transaksi\ mengandung\ A\ dan\ B\ x\ 100}{\sum Transaksi\ menggandung\ A}$$

2.2.2 Tahapan algoritma apriori

Dalam melakukan tahapan algoritma apriori ada 9 langkah:

- 1. Transformasi data dalam bentuk tabel tabular.
- 2. Menentukan nilai minimal support dan minimal confidence.
- 3. Pebentukan kandidat 1-itemset dan kandidat 2-itemset.
- 4. Pemangkasan atau pembuangan itemset yang memiliki nilai < minimum support (yang diterima adalah frekuensi itemset >= minimum support).
- 5. Untuk mencari nilai support diperoleh dengan rumus yang digunakan untuk suatu kombinasi 1-itemset dan kombinasi 2-itemset .

$$Support (A) = \frac{Jumlah \ transaksi \ mengandung \ A \ x \ 100}{Total \ transaksi}$$

Rumus 2.1 untuk mencari kombinasi 1-itemset

$$Support (A,B) = \frac{\sum Transaksi \ menggandung \ A \ dan \ B \ x \ 100}{\sum transaksi}$$

Rumus 2.2 untuk mencari kombinasi 2-itemset

Support (A,B) = $P \rho = (A \cap B)$

$$Support\left(A,B,C\right) = \frac{\sum \quad Transaksi \ menggandung \ A,B,C \ x \ 100}{\sum transaksi}$$

Rumus 2.3 Untuk mencari kombinasi 3-itemset

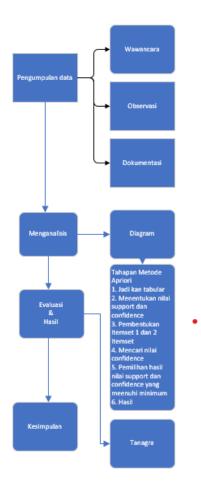
6. Untuk mencari nilai confidence diperoleh dengan rumus digunakan untuk sebuah kombinasi 3-itemset .

Confidence =
$$(A, B ==> C) = \frac{\sum Transaksi mengandung A, B, C}{\sum Transaksi menggandung A, B}$$

Rumus 2.4 Untuk mencari confidence

- 7. Selanjutnya akan menentukan nilai minimum confidence, lalu akan melakukan pemangkasan itemset yang kurang nilai minimum confidence (yang diterima adalah nilai confidence >= minimum confidence).
- 8. Setelah mendapatkan hasil di antara nilai support dan confidence pilih hasil yang paling besar.
- 9. Hasil yang paling besar merupakan rule yang dipakai dalam aturan asosiasi final.

2.2.2 Software tanagra


Software data mining bebas untuk tujuan akademik dan penelitian ini mengusulkan beberapa metode data mining dari analisis eksplorasi data, pembelajaran statistik, pembelajaran mesin dan bagian database. Tanagra ialah memberikan penelitian agar mudah dikerjakan pada perangkat lunak data mining.(Rangian & Fitriana, 2022)

Tanagra merupakan perangkat lunak data mining yang memiliki banyak fitur untuk menganalisis data, seperti analisis data eklporatif, statistik, dan mengelolahan database. Tidak seperti perangkat lunak lainnya. Tanagra juga bersifat *open source*, artinya siapapun bisa mengakses.(Listanto & Meisella

Kristania, 2022)

2.3 Kerangka pemikiran

Pelitian ini akan dilakukan sesuai dengan prosedur analisis data seperti yang sudah ada pada proses atau langkah data mining, Namun penelitian ingin menuliskan bagaimana cara kerangka pemikiran dari penelitian ini bisa mempermudah dalam membangun struktur penelitian dengan baik. Kerangka penelitian yang dibuat oleh peneliti.

Gambar 2. 2 Kerangka pemikiran

2.4 Penelitian terdahulu

Melihat masalah dan judul penelitian akan diteliti, maka diperlukan sebuah penerapan tentang penelitian terdahulu menggunakan fenomena yang sama dalam sudut pandang yang berbeda-beda sihingga diharapkan dapat memperluas pengetahuan, secara ringkas, penelitian tedahulu yang mendukung penelitian yang akan dilakukan dapat dilihat dibawa ini:

No	Nama peneliti	Judul peneliti	Hasil
1.	(Nst et al., n.d. 2021)	Impelementasi data	Dapat ditemukan
		mining algoritma	menggukan Algoritma
		apriori untuk	apriori, dengan melihat
		Meningkatkan	produk yang memenuhi
		penjualan	minimal support 2,4% dan
			minimal confidence 50%.
2.	(Erfina et al., 2020)	Penerapan metode	Dari hasil penelitian ini
		data mining terhadap	Artinya, untuk menentukan
		data transaksi	himpunan unsur,
		penjualan	ditemukan 4 aturan
		menggunakan	konjungsi, yaitu pranaya
		algoritma apriori ((P24TCV) →
		studi kasus : Toko	Roberto Cavalli dengan
		fasentro fancy)	keyakinan 83,33%, Levato
			→ Roberto Cavalli dengan

			keyakinan 83,33%,
			Pranaya (P24TCV) →
			Toyobo Fudo → Roberto
			Cavalli dengan keyakinan
			85,71%, Roberto Cavalli
			\rightarrow
			Pranaya (P24TCV) →
			Toyobo Fudo dengan
			keyakinan 80,00%.
3.	(Aulia Miranda et al.,	Impelementasi	Berdasarkan dapat dilihat
	2022)	assosian rule dalam	dari 6 aturan terbaik
		menganalisis data	dengan nilai confidence
		penjualan sheshop	58% sampai dengan 75%
		dengan menggunakan	bedasarkan 6 association
		algoritma apriori	rule yang diperoleh
			menghasilkan 2 produk
			yang sering dibeli dibeli
			secara bersamaan yaitu Al
			quran dan tasbih dengan
			nilai <i>confidence</i> 75%
			aturan kombinasi telah
			ditemukan menggunakan
			association rule dan telah

			diuji dengan menggunakan
			software rapid miner.
4	(Devita Sari &	Penerapan Metode	Dengan
	Khoiriah, 2022)	Asosiasi Pada Toko	mengimplementasikan
		Afifa Dengan	teknik data mining metode
		Algoritma Apriori	asosiasi algoritma apriori
			didapatkan hasil aturan
			asosiasi berupa rules
			menggunakan perpaduan
			frequent itemset
			memperoleh nilai support
			tertinggi adalah 50% dan
			nilai confidence 88,9%
			dengan kombinasi produk
			Sarden ABC dan Aqua
			dengan nilai Lift Ratio 2,78
			menandakan korelasi
			bersifat positif (kuat).
5.	(Pare et al., 2023)	Penerapan data mining	Penerapan data mining
		pada transaksi	pada transaksi penjualan
		penjualan barang	menggunakan algoritma
		menggunakan metode	apriori apriori sangat
		apriori (studi kasus :	membantu dalam

		Toko BE - MART	mengetahui antara
			frekuensi item yang ada
			dengan hasil yang
			didapatkan yaitu dimana
			jika komsumen yang
			membeli softex akan
			membeli skincare badan/
			muka menghasilkan nilai
			support 0.011% dan
			confidence 1%.
6.	(Fadila Matondang et	Penerapan data	Dalam tahap pengujian
	al., 2022)	mininng	sistem data mining
		menggunakan	algoritma apriori dapat
		algoritma apriori	dilakukan dengan
		dalam menentukan	melelakukan pengimputan
		pola penjualan	data elektronik, data
		elektronik	transaksi, minimum
			Minimum support dan
			minimum confidence untuk
			mendapatkan pola
			penjualan dan
			mendapatkan hasil
			rekomendasi di galaxy

			electronic
7.	(Putri & Sitohang,	ANALISIS POLA	Dari hasil penelitian ini
	2023)	PEMBELIAN	barang yang memiliki
		KONSUMEN	keterkaitan yaitu Atasan
		MENGGUNAKAN	Wanita dan Atasan Laki-
		ALGORITMA	Laki dengan nilai support
		APRIORI	27,86 % dan nilai
			confidence 68,00 %.
			Informasi ini juga dapat
			digunakan untuk
			mengetahui barang apa saja
			yang banyak diminati dan
			kurang diminati oleh
			konsumen dalam
			menentukan pengadaan
			stok barang apa yang harus
			diprioritaskan diwaktu
			mendatang.
8	(Informatika et al.,	Analisis data mining	Dengan menggunakan
	n.d.)	terhadap food dengan	metode apriori dengan
		metode apriori pada	menggunakan Tanagra
		kopsyahira	dapat membantu dalam
			mengetahui produk yang

			paling banyak terjual, yang
			pada akhirnya dapat
			digunakan untuk
			Menyusun sterategi
			penjualan dan dapat
			dilakukan promosi dengan
			melakukan kombinasi
			penjualan antara produk
			yang laku dan yang kurang
			laku dijual.
9	(Nauw et al., 2023)	Pemanfaatan data	Dapat diketahui produk
		mining dalam	mana yang sering dibeli
		memprediksi transaksi	secara bersamaan dari
		penjualan	catatan transaksi penjualan,
		menggunakan	yang dapat dijadikan untuk
		algoritma apriori	mempertimbangkan taktik
			penjualan seperti tata letak
			barang.
10	(Ovilianda & Ginting,	Penerapan Data	Dari pengujian data yang
	2021)	Mining Korelasi	telah dilakukan,
		Penjualan Spare Part	penerapanaturan asosasi
		Mobil Menggunakan	data mining dengan

terbentuk

Best

dan

Rule

yang

diperoleh

Metode Algoritma menggunakan algoritma Apriori apriori dapat digunakan mencari untuk korelasi penjualan sparepart mobil menggunakan algoritma apriori (studi kasus: CV. Citra Kencana Mobil). Dengan menentukan rule minimal 3 item set untuk penerapan algoritma kapriori pada korelasi penjualan sparepart mobil ditemukan maksimum support adalah sebesar 9% yaitu sebanyak 81 rule dengan support dan confidence yang beragam. pengujian Dari hasil penjualan sparepart mobil dengan jumlah data 589 data, ditemukan 81 rule

			tertinggi dan nilai
			minimum support 1% dan
			nilai confidence 11% Jika
			jenis Mobil adalah
			Avanza/Xenia dan Merk
			adalah Toyota maka
			sparepart yang digunakan
			adalah Filter Udara.
			Dengan sparepart
			pendukung di dalam
			database sebesar 1% dan
			sparepart kepastian sebesar
			11%.
11	(Sudarsono et al., n.d.	Analisis penjualan	Disimpulkan jika membeli
	2)	perlengkapan olahraga	training club maka akan
		pada HS sport	membeli body protector
		menggunakan metode	dengan Nilai confidence
		apriori	73% jika membeli body
			protector maka membeli
			hand protector dengam
			nilai <i>confidence</i> 79%.
12	(Ardiansyah, 2022)	Impelementasi data	Dalam pembahasan hasil
		mining dengan metode	proses apriori data proses
	1		

		apriori untuk analisis	menggunakan data tabel
		pola penjualan barang	transaksi penjualan online
		fashion	shop dan proses
			menggunakan metode
			apriori yang dapat
			menghasilkan nilai
			minimum <i>support</i> dan
			mininum confidence
13	(Muharni &	Penentuan pola	Beberapa kesimpulan yang
	Andriyanto, 2024)	penjualan	bisa ditarik dari penelitian
		menggunakan	diatas yaitu skenario
		algoritma apriori	penerapan metode asiosi
			untuk analisis pola data
			transaksi penjualan
			menghasilkan suatu pola
			aturan terkaitan (asosiasi)
			baru dari masing-masing
			item yang ada dataset
			dengan melalui proses
			metode asosiasi dalam
			mendaptkan berbagai
			kemungkinan aturan
			keterkaitan item terhadap

			data transaksi penjualan
14	(Setiawan, 2024)	Impelemntasi data	Berdasarkan hasil
		mining menggunakan	perhitungan data mining
		algoritma apirori	menggunakan algoritma
		terhadap pola	Apriori, data transaksi
		pembelian konsumen	penjualan dengan batas
		di marketplace shopee	minimum support sebesar
		jaktimstore	20% dan batas minimum
			confidence sebesar 80%.
15	(Osman et al., 2021)	Association rule	Penelitian ini menganalisis
		mining for	pola inspeksi kapal di lima
		identification of port	pelabuhan Malaysia
		state control patterns	menggunakan algoritma
		in Malaysian ports	Apriori. Hasilnya
			menunjukkan bahwa kapal
			berbendera tertentu dan
			kapal berisiko rendah
			(LRS) cenderung tidak
			memiliki kekurangan.
			Temuan ini bisa membantu
			pelabuhan meningkatkan
			strategi inspeksi dan
			keselamatan maritim.

Namun, masih perlu dikaji
lebih lanjut apakah inspeksi
di Malaysia terlalu longgar
dan apakah kapal yang
masuk benar-benar layak
laut. Penelitian lanjutan
disarankan untuk
mempertimbangkan faktor
lain seperti usia kapal dan
klasifikasi.