BAB III

METODE PENELITIAN

3.1 Jenis Penelitian

Penelitian ini mengambil jenis deskriptif dengan menggunakan pendekatan kuantitatif, yang dipilih untuk memberikan uraian yang metodis, berdasarkan fakta, dan tepat mengenai kondisi serta atribut dari variabel-variabel yang menjadi objek kajian. Selain itu, pendekatan ini diperkuat dengan kajian literatur yang relevan guna mendukung pemahaman teoritis terhadap permasalahan yang diangkat. Maka dari itu, riset ini dimaksudkan untuk mebahas mengenai pengaruh daya tarik iklan, kualitas produk dan kepercayaan konsumen terhadap minat beli *e-commerce* TikTok studi kasus Jiniso. Metodologi kuantitatif bersumber dari pandangan positivistik yang meyakini bahwa kebenaran dapat diungkap melalui data objektif yang bersifat numerik dan akan dianalisis dengan perangkat statistik. Umumnya, pendekatan ini digunakan dalam studi yang melibatkan sampel atau suatu populasi tertentu, dengan tujuan utama menguji hipotesis atau mengukur intensitas suatu peristiwa. Konsekuensinya, pendekatan ini memungkinkan penyimpulan secara luas berdasarkan data yang terstruktur dan terukur (Sugiyono, 2019: 17).

3.2 Sifat Penelitian

Replikasi akan dipergunakan sebagai bagian dari sifat penelitian pada riset ini. Hal ini merujuk pada karakteristik studi yang mengadopsi pendekatan serupa dengan penelitian sebelumnya. Artinya, riset ini mengulang ataupun mereproduksi penelitian terdahulu dengan menggunakan variabel-variabel yang sama atau sejenis serta menerapkan metode analisis yang serupa.

3.3 Lokasi dan Periode Penelitian

3.3.1 Lokasi Penelitian

Pelaksanaan penelitian ini berlokasi di Kota Batam pada tahun 2025 dan menitikberatkan pada pengguna TikTok yang juga bertindak sebagai konsumen aktif dalam kegiatan *e-commerce*. Fokus responden dalam penelitian ini adalah para individu yang telah melakukan transaksi pembelian produk Jiniso melalui fitur belanja pada aplikasi TikTok.

3.3.2 Periode Penelitian

Rangkaian penelitian ini dilaksanakan selama periode Maret hingga Juli tahun 2025. Prosesnya mencakup dari awal perumusan judul hingga tahap akhir berupa penarikan simpulan dan pemberian saran, yang keseluruhannya mengikuti jadwal kegiatan yang telah dirancang secara sistematis dan akan dipaparkan dalam uraian berikut:

Tabel 3.1 Jadwal Penelitian

		Ma	ret	.		Ap	ril			M	[ei			Ju	ıni			Jι	ıli	
Kegiatan	2025			2025			2025			2025			2025							
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Penentuan																				
Judul																				
Pendahuluan																				
Kajian Teori																				
Pembuatan																				
Kuesioner																				
Penyebaran																				
Kuesioner																				
Metode																				
Penelitian																				
Hasil dan																				
Pembahasan																				
Simpulan																				
dan Saran																				

Sumber: Data Penelitian (2025)

3.4 Populasi dan Sampel

3.4.1 Populasi

Populasi merupakan kesatuan dari keseluruhan elemen yang akan memiliki atribut-atribut tertentu yang secara teoritis dan empiris memiliki relevansi terhadap permasalahan penelitian. Populasi ini mencakup semua elemen yang dapat menjadi sasaran pengamatan atau suatu pengukuran oleh para peneliti, baik secara langsung maupun tidak langsung. Dalam ranah penelitian ilmiah, pemilihan populasi tidak dilakukan secara sembarangan, tetapi dapat berlandaskan pada pertimbangan logis mengenai relevansi atribut populasi dengan sasaran yang akan ingin dicapai dalam penelitian. Sebagai pusat referensi data, populasi memainkan peran penting dalam menyediakan informasi empiris yang akan dibutuhkan peneliti untuk menghasilkan simpulan yang memiliki daya jangkau generalisasi (Sugiyono, 2019: 127). Ruang lingkup populasi dalam riset ini terdiri atas individu yang menggunakan TikTok secara aktif dan telah bertransaksi membeli produk Jiniso selama tahun 2025 di lingkungan Kota Batam. Meskipun kelompok ini akan menjadi entitas sentral dalam pelaksanaan suatu penelitian, estimasi angka pasti dari populasinya belum dapat dipastikan.

3.4.2 Teknik Penentuan Besar Sampel

Sampel diartikan sebagai unit selektif dari populasi induk, yang ditentukan melalui strategi pengambilan data tertentu demi memperoleh suatu gambaran yang relevan dan proporsional terhadap keseluruhan populasi. Proses pemilihan sampel ini melibatkan pertimbangan yang cermat, di mana sampel yang dipilih diharapkan memiliki karakteristik yang serupa dengan populasi secara keseluruhan, meskipun

hanya terdiri dari sebagian elemen atau individu. Oleh karena itu, pemilihan sampel tidak hanya bergantung pada ukuran atau jumlah elemen yang diambil, tetapi juga pada prosedur seleksi yang dipergunakan, dengan tujuan untuk memastikan bahwa sampel tersebut benar-benar representatif dan dapat diandalkan untuk memperoleh hasil yang akan dapat digeneralisasi (Sugiyono, 2019: 127). Ketiadaan data pasti mengenai total populasi mengharuskan kajian ini akan menerapkan rumus *Jacob Cohen* sebagai acuan dalam menentukan jumlah sampel yang dapat representatif. Keterangan lengkap mengenai hal dimaksud akan disampaikan secara mendalam pada paragraf berikut:

$$N = \frac{L}{F^2} + u + 1$$
 Rumus 3.1 Jacob Cohen

Sumber: Nurhaida & Realize (2023: 913)

Keterangan:

N = Ukuran Sampel

 $F^2 = Effect Size (0,1)$

u = Banyaknya ubahan yang terkait pada penelitian

L = Fungsi power dari u, hasil table power = 0,95 diperoleh table t.s = 1%

Keberadaan dari rumus sebagaimana yang ditampilkan sebelumnya menjadi dasar bagi kajian perhitungan yang akan diuraikan pada bagian berikut:

$$N = \frac{L}{F^2} + u + 1$$

$$N = \frac{19,76}{0.1} + 5 + 1$$

$$N = 203.6 = 204$$

3.4.3 Teknik Sampling

Purposive sampling adalah salah satu teknik sampling yang akan diterapkan dalam penelitian ini. Teknik ini akan melibatkan pemilihan sampel secara sengaja berdasarkan pertimbangan tertentu yang relevan dengan tujuan penelitian. Dalam purposive sampling, peneliti memilih individu atau suatu elemen yang memiliki karakteristik khusus atau kriteria tertentu yang dianggap penting untuk menjawab pertanyaan penelitian. Teknik ini digunakan ketika peneliti ingin mengumpulkan data dari sampel yang memiliki pengalaman, pengetahuan, atau atribut tertentu yang sangat penting untuk menjawab pertanyaan kajian. Oleh karena itu, pemilihan sampel dalam purposive sampling sangat bergantung pada pertimbangan dan tujuan penelitian itu sendiri. Teknik ini memungkinkan peneliti untuk memperoleh sampel yang lebih representatif dalam konteks tertentu (Sugiyono, 2019: 128). Dengan merujuk pada hal tersebut, rincian mengenai kriteria yang dapat bersangkutan akan dijabarkan dalam penjelasan berikut ini:

- 1. Responden yang dikaji mencakup individu dengan usia minimal 17 tahun.
- Responden telah membeli produk Jiniso melalui TikTok setidaknya 2 kali atau lebih selama tahun 2025.

3.5 Sumber Data

Penelitian ini menuntut keberadaan suber data yang relevan, sebagaimana akan diuraikan pada pemaparan berikut:

1. Data Primer

Pengumpulan data primer dilakukan melalui interaksi langsung antara peneliti dan responden, sehingga informasi yang diperoleh berasal dari sumber pertama di lokasi studi. Data ini belum pernah diolah atau dipublikasikan sebelumnya oleh pihak lain, sehingga bersifat orisinal dan autentik. Teknik pengumpulan data primer dapat dilakukan dengan melalui penyebaran kuesioner, data primer digunakan untuk mendapatkan informasi yang benar-benar aktual dan sesuai dengan tujuan dari penelitian. Melalui pendekatan pengumpulan data primer, penelitian ini berupaya menangkap pengalaman dan respons aktual dari subjek yang terlibat secara langsung dalam isu yang ditelaah, sehingga mendukung proses analisis yang bersifat rinci dan terarah.

2. Data Sekunder

Data sekunder adalah himpunan informasi yang telah tersedia sebelumnya dan dikumpulkan oleh peneliti atau institusi lain, biasanya dipresentasikan dalam bentuk publikasi ilmiah, bahan bacaan akademik, atau dokumen yang diakses melalui media digital. Meskipun bukan hasil pengumpulan langsung oleh peneliti, data sekunder tetap memiliki suatu nilai penting karena akan dapat memberikan sebuah informasi pendukung yang memperkuat atau memperluas interpretasi terhadap data primer. Selain itu, data sekunder juga akan membantu peneliti memahami suatu konteks penelitian secara historis maupun teoritis. Dalam studi ini, data sekunder digunakan sebagai pelengkap untuk memperkuat dasar pemikiran, memberikan pembanding, serta menghubungkan antara data lapangan dengan teori yang ada.

3.6 Metode Pengumpulan Data

Untuk mencapai hasil studi yang kredibel, diperlukan metode pengumpulan data data yang tepat guna, sebagaimana dijelaskan berikut:

1. Kuesioner

Kuesioner adalah suatu alat bantu pengumpulan data yang dilakukan dengan cara menyebarkan sejumlah pertanyaan tertulis kepada responden yang dipilih sebagai sampel penelitian. Metode ini digunakan untuk suatu memperoleh data primer, yaitu data langsung dari sumber pertama yang berhubungan dengan permasalahan penelitian. Kuesioner biasanya disusun dalam bentuk sistematis dan terstruktur, yang akan dapat mencakup pertanyaan tertutup dengan pilihan jawaban seperti skala *Likert*. Pertanyaan dalam kuesioner disusun berdasarkan indikator dari variabel-variabel yang diteliti agar data yang diperoleh bersifat objektif dan relevan dengan suatu hipotesis atau tujuan studi. Keunggulan dari penggunaan kuesioner antara lain adalah efisiensi waktu dan biaya, kemampuan untuk menjangkau para responden dalam jumlah besar, serta kemudahan dalam proses tabulasi dan analisis data. Relevansi penilaian memegang peran kunci dalam mendukung kuesioner, sebagaimana terlihat pada penjelasan berikut:

Tabel 3.2 Pemberian Skor Kusioner

No	Alternatif Jawaban	Kode	Skor
1	Sangat Setuju	SS	5
2	Setuju	S	4
3	Netral	N	3
4	Tidak Setuju	TS	2
5	Sangat Tidak Setuju	STS	1

Sumber: Sugiyono (2019: 147)

2. Studi Pustaka

Pengumpulan data melalui studi pustaka akan dilakukan dengan menelusuri dan menganalisis sejumlah sumber ilmiah yang dianggap berhubungan erat dengan tema penelitian yang sedang dikaji. Sumber-sumber ini akan bisa berupa buku teks, jurnal ilmiah nasional maupun internasional, skripsi atau tesis sebelumnya

dan yang lain-lainnya. Tujuan utama dari studi pustaka adalah untuk memahami teori-teori, konsep-konsep dasar, dan temuan-temuan terdahulu yang berkaitan dengan masalah penelitian. Melalui studi pustaka, peneliti dapat membangun kerangka teori, menyusun latar belakang penelitian, serta merumuskan hipotesis atau rumusan masalah yang tajam. Selain itu, kajian literatur juga membantu dalam mengidentifikasi celah penelitian, yang menjadi dasar argumen penting dalam menjelaskan urgensi dan kontribusi penelitian yang dilakukan.

3.7 Definisi Operasional Variabel Penelitian

3.7.1 Variabel Independen (X)

Sebagai salah satu komponen utama dalam riset, variabel independen akan dianggap berpotensi menimbulkan perubahan atau memberikan dampak terhadap variabel dependen yang menjadi objek pengaruhnya. Sebagai bagian dari desain penelitian, variabel ini bertindak sebagai pendorong yang dapat diyakini mampu menghasilkan respons, efek, ataupun kondisi yang dapat diamati. Oleh karena itu, variabel independen kerap disebut sebagaimana faktor penyebab atau faktor yang memengaruhi, karena peran utamanya adalah memberikan kontribusi terhadap munculnya fenomena yang diteliti (Sugiyono, 2019: 69). Pada konteks riset yang dijalankan ini variabel independen meliputi daya tarik iklan (X1), kualitas produk (X2) dan kepercayaan konsumen (X3).

3.7.2 Variabel Dependen (Y)

Dalam suatu analisis ilmiah, variabel dependen menjadi hasil atau *output* yang timbul akibat adanya perlakuan atau stimulus dari variabel bebas. Perubahan dalam suatu variabel dependen tidak terjadi secara mandiri, melainkan sebagai

akibat dari pengaruh yang diberikan oleh variabel bebas dalam suatu hubungan atau penelitian. Oleh karena itu, variabel dependen sebagaimana akan sering disebut sebagaimana variabel yang terikat, karena keberadaannya sangat bergantung pada kondisi dan pergerakan dari variabel independen yang menjadi sumber pengaruh utama dalam suatu proses penelitian (Sugiyono, 2019: 69). Dalam penelitian ini, minat beli (Y) berperan sebagai variabel dependen.

Tabel 3.3 Operasional Variabel

No	Variabel	Definisi Variabel	Indikator	Skala
1	Daya Tarik Iklan (X1)	Daya tarik iklan merupakan komponen penting dalam strategi periklanan yang dirancang secara khusus untuk menarik perhatian target audiens (Fataron, 2021: 52).	 Memiliki makna Dapat dipercaya Berbeda 	Likert
2	Kualitas Produk (X2)	Kualitas produk dipahami sebagai kemampuan suatu barang dalam menunjukkan kinerja inti yang stabil dalam berbagai kondisi penggunaan (Rusmiyati & Hartono, 2022: 22).	 Komposisi produk Desain produk Daya tahan produk 	Likert
3	Kepercayaan Konsumen (X3)	Kepercayaan konsumen mencerminkan persepsi terhadap kemampuan suatu entitas dalam memberikan produk atau layanan secara andal dan sesuai harapan (Sari et al., 2023: 978).	 Keamanan Privasi Keandalan 	Likert
4	Minat Beli (Y)	Minat beli merupakan bentuk reaksi psikologis dari individu yang muncul sebagai hasil dari ketertarikan terhadap suatu produk (Meliawati <i>et al.</i> , 2023: 80).	 Minat transaksional Minat refrensial Minat eksplorasi 	Likert

Sumber: Data Penelitian (2025)

3.8 Metode Analisis Data

3.8.1 Uji Statistik Deskriptif

Uji statistik deskriptif akan dapat didefinisikan sebagaimana suatu metode pendahuluan dalam pengolahan data yang bertujuan untuk menyusun data mentah menjadi sajian informatif yang ringkas dan representatif. Pendekatan ini dirancang bukan untuk pengujian hipotesis atau penarikan kesimpulan inferensial, melainkan untuk menelusuri konfigurasi umum, pola distribusi, serta kecenderungan nilainilai dalam suatu kumpulan data berdasarkan indikator statistik tertentu seperti nilai tengah, frekuensi kemunculan, distribusi persentase, dan deviasi standar. Melalui proses ini, data yang semula bersifat acak dan tidak terorganisir dialihkan menjadi bentuk yang lebih tertata dan mudah diinterpretasikan. Dengan fungsinya yang bersifat eksploratif, statistik deskriptif memainkan peranan krusial dalam tahapan awal analisis kuantitatif guna memberikan pijakan awal dalam memahami variabelvariabel yang diamati sebelum dilakukan pengkajian yang lebih mendalam secara analitik (Sugiyono, 2019: 206). Sebagai dasar dalam pelaksanaan pengujian, rumus yang dimaksud sebagaimana akan dapat diuraikan secara runtut melalui penjelasan berikut ini:

$$RS = \frac{n (m-1)}{m}$$
 Rumus 3.2 Rentang Skala

Sumber: Sugiyono (2019: 206)

Keterangan:

RS : Rentang skala

n : Jumlah responden

m : Jumlah *alternative* jawaban

Dengan memperhatikan rumus yang telah ditampilkan, analisis perhitungan akan dijabarkan melalui uraian di bawah ini:

$$RS = \frac{204 (5 - 1)}{5}$$

$$RS = \frac{(816)}{5}$$

$$RS = 163,2$$

Tabel 3.4 Kategori Rentang Skala

No	Rentang Skala	Kategori
1	204-367,2	Sangat Tidak Setuju
2	367,3-530,5	Tidak Setuju
3	530,6-693,7	Netral
4	693,8-856,9	Setuju
5	857-1020	Sangat Setuju

Sumber: Data Penelitian (2025)

3.8.2 Uji Kualitas Data

3.8.2.1 Uji Validitas

Uji validitas merupakan salah satu prosedur esensial dalam rangkaian metodologi penelitian yang berfungsi untuk mengevaluasi sejauh mana suatu alat ukur, seperti angket atau kuesioner, memiliki kecermatan dari dalam merefleksikan konstruk teoritis yang akan hendak diungkap. Validitas akan mencerminkan derajat keterkaitan logis antara setiap butir pertanyaan dengan dimensi konseptual dari variabel yang sedang dianalisis. Sebuah instrumen dapat dinyatakan valid apabila komponen-komponen di dalamnya secara substansial mampu merepresentasikan atribut-atribut yang melekat pada objek kajian. Ketepatan ini menandakan bahwa alat ukur tersebut tidak sekadar menyajikan data, tetapi juga mencerminkan realitas secara metodologis. Dengan demikian, semakin tinggi validitas suatu instrumen,

semakin tinggi pula kredibilitas inferensi yang dihasilkan dari sebuah data yang akan dikumpulkan, sehingga mendukung keabsahan temuan dalam kerangka tujuan ilmiah penelitian (Alamudi & Utomo, 2022: 6). Acuan yang akan dipergunakan sebagai standar dalam pengujian akan dijelaskan secara rinci pada bagian:

- 1. Temuan dikategorikan valid ketika r hitung menunjukkan angka yang lebih tinggi daripada t tabel.
- 2. Temuan dikategorikan tidak valid ketika r hitung menunjukkan angka yang lebih rendah daripada t tabel.

Rumus yang akan menjadi dasar dalam pengujian ini akan disajikan dengan penjabaran sistematis di bagian yang diuraikan berikut:

$$r_{x} = \frac{\operatorname{n} \sum xy - (\sum x)(\sum y)}{\sqrt{[\operatorname{n} \sum x^{2} - (\sum x)^{2}]N(\sum y^{2} - (\sum y)^{2})}}$$

Rumus 3.3 Pearson Correlation

Sumber: Sugiyono (2019: 246)

Keterangan:

= Koefesiensi korelasi X dan Y r_{xv}

= Jumlah responden n

X = Skor tiap item

Y = Skor total

3.8.2.2 Uji Reliabilitas

Uji reliabilitas merupakan suatu proses evaluasi terhadap suatu instrumen penelitian untuk mengetahui tingkat konsistensi dan kestabilan hasil yang diberikan ketika pengukuran dilakukan secara berulang dalam suatu kondisi atau situasi yang serupa. Maksudnya, sebuah instrumen akan dinyatakan reliabel apabila mampu kali, asalkan tidak terjadi perubahan signifikan pada objek atau subjek yang diukur. Dengan kata lain, reliabilitas menekankan pada keajegan hasil pengukuran, yang menunjukkan bahwa instrumen tersebut dapat dipercaya untuk digunakan dalam berbagai kesempatan tanpa menghasilkan perbedaan yang berarti. Tingkat suatu reliabilitas yang optimal menunjukkan bahwa hasil pengukuran dapat dipercaya

menghasilkan data atau jawaban yang relatif sama ketika digunakan lebih dari satu

karena tidak mudah dipengaruhi oleh faktor eksternal yang bersifat kebetulan

maupun inkonsistensi prosedural (Alamudi & Utomo, 2022: 6). Pada bagian berikut

ini, akan dipaparkan suatu pedoman yang dijadikan acuan dalam proses pengujian:

1. Hasil *reliabel* akan dapat dibuktikan apabila nilai *cronbach's alpha* lebih besar

daripada nilai 0,60.

2. Hasil tidak reliabel akan dapat dibuktikan apabila nilai cronbach's alpha lebih

rendah daripada nilai 0,60.

Rangkaian rumus yang akan menjadi acuan dalam proses pengujian akan

diuraikan secara metodis pada pembahasan berikut:

$$a = \left(\frac{k}{k-1}\right) \left(\frac{s_{x}2 - \sum S_{i}^{2}}{S_{x}^{2}}\right)$$
 Rumus 3.4 Alpha Crobach

Sumber: Manggala & Hidayat (2021: 752)

Keterangan:

a = Koefisien reliabilitas *Alpha Cronbach*

k = Jumlah item yang diuji

 $\sum S_i^2$ = Jumlah varian item

 s_x^2 = Varian skor-skor tes

3.8.3 Uji Asusmsi Klasik

3.8.3.1 Uji Normalitas

Uji normalitas adalah suatu alat untuk mengevaluasi apakah data residual yang dihasilkan dari model regresi mengikuti distribusi normal. Normalitas residual ini sangat penting karena asumsi bahwasanya data residual tersebar secara normal merupakan dasar dari banyak teknik statistik yang digunakan dalam analisis regresi. Oleh karena itu, dengan melakukan uji normalitas, dapat memastikan bahwa model regresi yang dipergunakan menghasilkan estimasi yang relevan, serta memberikan gambaran yang tepat tentang hubungan antara variabel independen dan dependen dalam penelitian (Muslaty & Rismawati, 2024: 7). Berbagai metode yang sering digunakan untuk menguji normalitas residual antara lain histogram, *normal p-p plot* dan pengujuan *Kolmogorov-Smirnov*. Ketiga metode ini saling melengkapi dalam membantu peneliti memastikan asumsi dari normalitas dalam model regresi yang digunakan. Penjabaran mengenai standar yang menjadi tolak ukur dalam pengujian akan disampaikan dalam uraian berikut:

- 1. Sebuah akan distribusi dianggap normal apabila data tersebar secara simetris di sekitar garis diagonal atau kurva histogramnya membentuk pola lonceng.
- 2. Sebuah distribusi dianggap tidak normal apabila ditandai dengan penyebaran yang jauh dari garis diagonal atau kurva yang tidak berbentuk lonceng.

Pedoman yang dijadikan dasar evaluatif dalam *Kolmogorov-Smirnov* akan dipresentasikan secara sistematis pada bagian berikut:

 Suatu pengukuran terbukti berdistribusi normal secara empiris jika Asymp. Sig. (2-tailed) melampaui nilai 0,05. Suatu pengukuran terbukti tidak berdistribusi normal secara empiris jika Asymp.
 Sig. (2-tailed) tidak melampaui nilai 0,05.

3.8.3.2 Uji Multikolinearitas

Uji multikolinearitas merupakan salah satu langkah penting dalam analisis regresi yang digunakan untuk mengidentifikasi adanya hubungan linear yang tinggi atau korelasi kuat antar variabel independen dalam suatu model. Ketika dua atau lebih variabel bebas memiliki keterkaitan yang sangat erat, maka kondisi tersebut dapat menimbulkan masalah dalam proses estimasi parameter regresi, karena dapat menyebabkan ketidakstabilan nilai koefisien regresi serta mengurangi keakuratan interpretasi suatu hasil analisis. Dengan melakukan pengujian ini, peneliti dapat mengetahui sejauh mana tingkat interdependensi antar variabel bebas, sehingga dapat diambil tindakan seperti memodifikasi variabel yang akan menimbulkan multikolinearitas. Diperlukan adanya uji ini untuk memastikan bahwa model dari regresi yang akan dibangun dapat menyajikan hasil yang merepresentasikan kondisi empiris secara andal (Muslaty & Rismawati, 2024: 7). Uraian berikut menjelaskan berbagai panduan yang digunakan sebagai titik referensi dalam proses pengujian:

- 1. Salah satu ciri dari tidak adanya multikolinearitas adalah ketika kandungan *tolerance* bernilai lebih dari 0,10 dan VIF berada di bawah nilai kritis 10,00.
- Salah satu ciri dari adanya multikolinearitas adalah ketika kandungan tolerance bernilai rendah dari 0,10 dan VIF berada di atas nilai kritis 10,00.

3.8.3.3 Uji Heteroskedastisitas

Uji heteroskedastisitas adalah alat untuk mengetahui apakah dalam suatu model regresi linear terdapat ketidakkonsistenan varians dari error pada setiap nilai

variabel independen yang diamati. Dalam konteks regresi yang ideal, asumsi klasik menyatakan bahwa varians dari residual harus bersifat konstan atau tetap, suatu kondisi yang dikenal sebagai homoskedastisitas. Homoskedastisitas menunjukkan bahwa penyimpangan nilai pengamatan terhadap nilai prediksi bersifat merata di seluruh rentang data. Namun, apabila ditemukan adanya ketidaksamaan varians residual di berbagai pengamatan disebut heteroskedastisitas. Ketidakkonsistenan varians error atau heteroskedastisitas berpotensi menurunkan akurasi hasil estimasi regresi serta menciptakan distorsi dalam pengambilan suatu kesimpulan statistik (Muslaty & Rismawati, 2024: 7). Rangkaian pengujian ini mengacu pada pedoman tertentu yang akan dipaparkan dalam bagian berikut:

- 1. Residual yang memperlihatkan bentuk pola visual tertentu, seperti gelombang atau pola corong, mengindikasikan adanya masalah heteroskedastisitas.
- Ketika plot residual menunjukkan sebaran titik yang tidak teratur dan berada di angka nol pada sumbu Y, hal ini tidak ada gejala heteroskedastisitas dalam model.

3.8.4 Uji Pengaruh

3.8.4.1 Analisis Regresi Linier Berganda

Analisis regresi linier berganda merupakan suatu pendekatan analitis dalam ranah penelitian kuantitatif yang dirancang untuk mengevaluasi intensitas dan arah pengaruh dari sejumlah variabel independen terhadap satu variabel dependen secara bersamaan. Pendekatan ini mengakomodasi kompleksitas hubungan multivariat, sehingga memungkinkan peneliti untuk menelusuri suatu kontribusi relatif masingmasing prediktor dalam memodelkan perubahan yang terjadi pada variabel respon.

Tidak hanya berfungsi sebagai alat untuk mendeteksi signifikansi statistik dari setiap variabel bebas, teknik ini juga berperan dalam mengestimasi proporsi varian yang dijelaskan oleh keseluruhan model. Oleh karena itu, regresi linier berganda memiliki posisi strategis dalam proses analisis data kuantitatif, terutama dalam konteks perumusan kebijakan atau suatu pengambilan keputusan yang berpijak pada bukti empiris yang terukur (Primadani & Suwitho, 2024: 9). Sebagai panduan dalam proses pengujian, persamaan yang relevan akan dijelaskan secara metodis pada uraian di bawah ini:

$$Y + b_1X_1 + b_2X_2 + b_3X_3 + e$$
 Rumus 3.5 Regresi Linear Berganda

Sumber: Primadani & Suwitho (2024: 9)

Keterangan:

Y = Minat beli

a = Konstanta

X1 = Daya Tarik Iklan

X2 = Kualitas Produk

X3 = Kepercayaan Konsumen

b1 b2 b3 = Koefisien Regresi

e = Eror

3.8.4.2 Analisis Koefisien Determinasi (R²)

Analisis koefisien determinasi (R²) merupakan indikator statistik yang akan krusial dalam kerangka analisis regresi, yang digunakan untuk mengkuantifikasi sejauh mana konstruksi model regresi dapat menginterpretasikan variasi yang akan terdapat pada variabel terikat. Nilai R² merepresentasikan besaran proporsional dari

61

total keragaman variabel dependen yang berhasil dijelaskan oleh variabel-variabel

independen yang terlibat dalam model. Dengan kata lain, R² mencerminkan tingkat

kecakupan model dalam menggambarkan dinamika suatu perubahan yang terjadi.

Semakin mendekati nilai maksimum, maka akan semakin tinggi pula kemampuan

prediktif model tersebut, sehingga memberikan keyakinan lebih besar terhadap

keakuratan dan reliabilitas estimasi yang dihasilkan dalam konteks analisis empiris.

Sebaliknya, nilai R² yang rendah menunjukkan perlunya melakukan pengembangan

model atau mempertimbangkan variabel lain yang mungkin lebih relevan dalam

menjelaskan perubahan yang dapat terjadi pada variabel dependen (Primadani &

Suwitho, 2024: 10). Pada bagian berikut ini sebagaimana akan dapat dipaparkan

prinsip dasar yang digunakan sebagai suatu parameter utama dalam pelaksanaan

pengujian:

1. Semakin dekat nilai R² ke angka 1, semakin besar pula kemampuan model

regresi dalam menggambarkan variasi dari variabel dependen.

2. Semakin dekat nilai R² ke angka 0, semakin kecil pula kemampuan model

regresi dalam menggambarkan variasi dari variabel dependen.

Sebagai panduan dalam proses analisis, rumus yang relevan akan dijelaskan

secara metodis pada uraian di bawah ini:

 $Kd = r^2 \times 100\%$

Rumus 3.6 Koefisien Determinasi

Sumber: Manggala & Hidayat (2021: 753)

Keterangan:

Kd

: Koefisien determinasi

r

: Koefisien korelasi

3.9 Uji Hipotesis

3.9.1 Uji Hipotesis Secara Parsial – Uji t

Uji t adalah alat yang digunakan untuk mengukur pengaruh atau kontribusi signifikan dari setiap variabel independen terhadap suatu variabel dependen secara individual dalam sebuah model regresi. Tujuan utama dari uji t ini adalah untuk menguji apakah variabel independen tertentu memiliki hubungan yang signifikan dengan variabel dependen. Dalam konteks ini, uji t menguji hipotesis nol, yang biasanya menyatakan bahwa tidak ada pengaruh atau hubungan antara variabel independen dan variabel dependen. Secara rinci, uji t akan dilakukan dengan membandingkan nilai t hitung yang diperoleh dengan nilai t tabel pada tingkat signifikansi tertentu, yang umumnya ditetapkan pada 0,05. Dengan memanfaatkan uji t, proses penilaian terhadap pengaruh masing-masing variabel bebas terhadap variabel tergantung dapat dilakukan secara terpisah, yakni dalam kondisi yang mengisolasi faktor-faktor lain dalam model regresi (Abhista & Prijati, 2024: 10). Panduan yang menjadi landasan untuk pelaksanaan pengujian akan dijabarkan pada bagian berikut sebagaimana suatu bentuk penyusunan kerangka ukur dalam riset yang dikaji:

- Secara parsial variabel independen dan dependen akan saling mempengaruhi signifikan ketika t hitung yang ditemukan melampaui t tabel dan Sig. berada di bawah 0,05.
- Secara parsial variabel independen dan dependen tidak saling mempengaruhi signifikan ketika t hitung yang ditemukan tidak melampaui t tabel dan Sig. berada di atas 0,05.

Penjelasan mengenai rumus yang akan menjadi acuan pengujian akan dikaji secara komprehensif dalam bagian berikut:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$
 Rumus 3.7 Uji t

Sumber: Sugiyono (2019: 200)

Keterangan:

t = Pengujian hipotesis

r = Koefisien korelasi

 r^2 = Koefisien determinasi

n = Jumlah responden

3.9.1 Uji Hipotesis Secara Simultan – Uji F

Uji F merupakan prosedur statistik dalam analisis regresi yang digunakan untuk menilai kebermaknaan kolektif dari seluruh variabel bebas terhadap variabel terikat dalam suatu model. Melalui pendekatan ini, peneliti dapat menguji apakah secara agregat, variabel-variabel dari independen yang diikutsertakan memiliki kontribusi signifikan dalam menjelaskan variabilitas pada suatu variabel dependen. Pengujian dilakukan dengan membandingkan nilai f empiris yang dihasilkan dari analisis regresi dengan nilai kritis f pada tingkat probabilitas tertentu, seperti 0,05. Uji ini memegang peranan sentral dalam mengkaji suatu kelayakan model secara menyeluruh, berbeda dengan uji t yang mengevaluasi efek individual tiap prediktor. Dengan demikian, Uji F memberikan pandangan komprehensif terhadap kekuatan prediktif gabungan dari seluruh variabel bebas yang terlibat dalam model (Abhista

& Prijati, 2024: 10). Untuk keperluan pengujian, pedoman yang berfungsi sebagai ukuran akan dijelaskan pada bagian berikut:

- 1. Secara simultan pengaruh signifikan akan terjadi pada saat f hitung yang telah dikemukakan melebihi f tabel dan disertai *Sig.* kurang dari 0,05.
- 2. Secara simultan pengaruh signifikan tidak akan terjadi pada saat f hitung yang telah dikemukakan tidak melebihi f tabel dan disertai *Sig.* melebihi dari 0,05.

Dalam bagian berikut, akan dipaparkan secara sistematis rumus yang akan dijadikan rujukan dalam proses pengujian:

$$F_{hitung} = \frac{R^2/K}{1 - R^2 (n - k - 1)}$$

Rumus 3.8 Uji f

Sumber: Sugiyono (2019: 257)

Keterangan:

R2 = Koefisien korelasi berganda

K = Jumlah variabel independen

n = Jumlah anggota sampel